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Design and Process Guidelines for
Use of Ceramic Chip Capacitors



_________________________________________________________________________________________
CALCE Electronic Products and Systems Center               University of Maryland

What are ceramic chip capacitors?

• Introduced in 1977
• Also known as multilayer ceramic capacitors

(MLCC’s)
• One of the most common components in the

electronics industry
– The largest manufacturers produce approximately 2

billion MLCC’s per year
– 98% yield would result in 40 million defective

components

• Operating Specifications
– 1 pF to 30 µF; 10 to 3000 volts
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MLCC's

Termination/End Cap

Body
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Architecture of MLCC's

• Dielectric is a proprietary
alloy of barium titanate

• Electrode is often an alloy of
silver or silver palladium
(rarer due to cost)

• Electrode spacing can be as
small as 25 µm
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Manufacture of MLCC's

• Two processes
– Dry Sheet

– Wet Build Up

• Final steps are similar
– Termination:

• Silver or silver palladium alloy frit

• Nickel barrier layer

• Tin overplate

– 100% Final Testing
• Insulation Resistance, Overvoltage (2x rated voltage),

Capacitance and Dissipation Factor
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Dry Sheet Fabrication

• Dry Build is most common
• Green tape process

– Mixture of dielectric powder and organic binder

• Green tape is coated with a film of silver or silver
palladium alloy

• The coated tapes are then stacked, pressed and the
entire structure is sintered at 1000 to 1400oC.

• The dense blocks are then cut to final dimensions
and tumbled to round corners

• Primary advantage: Tight control of electrode
spacing



_________________________________________________________________________________________
CALCE Electronic Products and Systems Center               University of Maryland

Wet Build Up Fabrication

• Uses screen printing to lay down successive layers
of dielectric (ceramic) and electrodes

• Preform is cut and then baked to provide some
degree of strength

• Rounding is followed by sintering to full density
• Process is closed-loop, fully-automated

– Allows greater control with minimal handling

• Primary advantages:
– High density of the wet layers reduces shrinkage
– Wet process tends to induce better interlayer bonding
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Manufacture of MLCC's (cont.)
• Standard sizes

– 0805:  0.08 in x 0.05 in x 0.05 in (varies w/capacitance)
2.0 mm x 1.3 mm x 1.3 mm

– 0402, 0603, 1206, 1210, 1812, 1825, and 2225 (precludes
high voltage)

– 0201 starting to be introduced

• High volume manufacturers of MLCC's
– Kemet ($1.4 billion in annual revenue)
– AVX ($2.6 billion)(division of Kyocera)
– Vishay ($2.4 billion)
– Others: Murata ($3.1 billion, Japan), KOA-Speer, Sierra-

KD, Rohm ($2.7 billion, Japan), TDK ($4.2 billion,
Japan), Panasonic, and Phycomp (formerly Philips)
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Failure of MLCC’s

• Definitions
– Failure Mode: The effect by which the failure is

observed (i.e., capacitor burns)
– Failure Mechanism: The process(es) by which the

failure mode is induced (i.e., migration of silver
between adjacent electrodes)

– Failure Site: The physical location of the failure
mechanism (i.e., board side of the termination of the
end cap)

– Root Cause: The process, design and/or environmental
stress that initiated the failure mechanism (i.e.,
excessive flexure of the board)
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Definitions (cont.)

• Definitions (cont):
– Wearout Failures: Failures due to the accumulation of

damage exceeding the endurance limit of the material

– Overstress Failures: Catastrophic failures due to a
single occurrence of a stress event

– Intrinsic Defects: Defects introduced as a result of the
raw materials or the manufacturing process

– Extrinsic Defects: Defects introduced after the
manufacture of the product
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Do MLCC's Wearout?

• The primary type of mechanisms that induces
wearout failures in MLCC’s is punch-through,
which is an iterative process:

– Areas of current leakage experience self-heating.
– Causes deterioration of the insulation resistance
– Leads to increase the current leakage
– Eventually, a conductive path is formed between

adjacent electrodes.

• Does not include failure of the solder interconnect,
a common failure mode in large MLCC’s in severe
environments.

– Large, leadless, ceramic (small CTE)
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MLCC Wearout (cont.)

• Due to the widespread practice of derating
(operating the capacitor at 50% rated voltage)
MLCC’s are not expected to experience wearout
during operation.

• According to Mogilevsky and Shin (1988):

    where t is time, V is voltage, T is temperature (K),
Ea is an activation energy (~1.3) and KB is
Boltzman's constant (8.62 x 10-5 eV/K)
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Operating Life

• Time to 1% failure (t1%) for a 50 volt
MLCC is ~10 hours at 200 V and 200oC

• Equivalent to ~100 years operating at 25
volts at 25oC

• More recent work published by Kemet
(Rawal, Krishnamani and Maxwell) suggest
a higher activation energy (1.8 to 1.9)
– Extends theoretical lifetime to 350 to 700 years
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Intrinsic Defects

• The overwhelming percentage of MLCC's
fail due to the introduction of intrinsic and
extrinsic defects

• Intrinsic Defects (manufacturing)
– Firing Cracks

– Knitline Cracks (Delamination)

– Voiding
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Firing Cracks

• Often originate at an
electrode edge, but not
always.

• Propagation path is
perpendicular to the
electrodes

• Root cause
– Rapid cooling during

capacitor manufacturing

80
µµm

20
µµm
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Firing Cracks (cont.)

Additional examples
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Knit Line Cracks
• Knit line cracks extend parallel to the electrodes

• Occur post-densification
– Large crack openings

– Jagged propagation paths

• Root causes
– Non-optimized pressing or

sintering
•Insufficient binding
strength/Delamination

•Trapping of air or foreign
material

•Internal sublimation of burnout
material
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Knit Line Crack (Delamination)
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Knit Line Cracks (cont.)

Additional examples
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Voiding
• Voids bridging two or more

electrodes can become a short
leakage current path and a
latent electrical defect

• Large voids can also lead to a
measurable reduction in
capacitance

• Root causes
– Contamination, both organic

and inorganic, in the ceramic
powder

– Non-optimized burnout process
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Extrinsic Defects

• Extrinsic Defects
– Handling Cracks

– Thermal Shock

– Flex Cracks

– Silver Migration

– Tombstoning
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Handling Cracks
• Occur during

component handling
and placement
– Excessive stress from

centering jaws

– Excessive placement
stresses
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Handling Cracks (cont.)
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Thermal Shock Cracks

• Occurs due to excessive change in
temperature during wave solder, solder
reflow, cleaning or rework

• Three manifestations
– Visually detectable (rare)

– Electrically detectable

– Microcrack (worst-case)
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Thermal Shock (microcrack)
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Microcrack (cont.)
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Thermal Shock Solutions

• If possible, avoid wave soldering
– Highest heat transfer rate and the largest temperature

changes.

• Minimize rapid temperature changes
– Room temperature to preheat (max. 2-3oC/sec.)
– Preheat to approximately 150oC
– Preheat to maximum temperature (max. 4-5oC/sec.)
– Cooling (max. 2-3oC/sec.).

• Make sure assembly is less than 60oC before
cleaning
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Optimum Reflow/Wave Profiles

• Infrared Reflow (IR)
– Peak temperature of 215-219°C
– 45-60 seconds above melting point
– Pre-heat zone at 100° and at 150°C to activate the flux and to allow

uniform heating of the board respectively

• Forced Air Convection
– Better heating efficiency, less sensitive to material properties than IR
– Temperature gradient across the board becomes much less significant
– Long soak time not as important

• Wave Solder
– Belt speeds of 1.2 to 1.5 meters/minute
– Wave temperature should be 232° ± 2°C
– Preheat of ~140°C with a dwell time not to exceed 10 seconds
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Thermal Shock Solutions

• Use best practices of rework on MLCC's
– Preheat to 150oC
– Hot air vs. Solder iron

• Change the capacitor
– Thinner capacitors
– Smaller capacitors
– Choose a dielectric material with a higher fracture

toughness (C0G, NP0 > X7R > Z5U, Y5V)

• Change the board
– Smaller bond pads (reduced thermal transfer)
– Smaller solder joint fillets
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Flex Cracks

• Due to excessive flexing of the board

• Occurrence
– Depaneling

– Handling (i.e., placement into a test jig)

– Insertion (i.e., mounting insertion-mount
connectors or daughter cards)

– Attachment of board to other structures (plates,
covers, heatsinks, etc.)
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Flex Cracks

10 mm

 

Root Cause: 
Connector Insertion

Root Cause: 
Tightening of Screw
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Flex Crack (examples)

 

End
Cap

Dielectric

Flex Crack

Electrodes
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Flex Cracks (extreme)
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Flex Crack (examples – cont.)
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When does Flex Cracking Occur?

Failure Rate 100ppm 0.1% 1% 10% 50% 

Displacement (mm/in.) 1.84 / 0.07 2.02 / 0.08 2.25 / 0.09 2.56 / 0.10 2.95 / 0.12 

Radius of Curvature (mm/in.) 367 / 14.4 334 / 13.4 300 / 11.8 264 / 10.4 229 / 9.0 

Board-Level Strain 2.18E-03 2.39E-03 2.67E-03 3.03E-03 3.50E-03 

 

Based on bend test performed by Kemet
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Flex Cracking (board strain)
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Flex Cracking (internal stress)

0.0001

0.001

0.01

0.1

40 45 50 55 60

Max. Stress Parallel to the Capacitor Length, σ, σ11  (MPa)

P
ro

b
ab

ili
ty

 o
f 

F
ai

lu
re

Flex Data from Kemet
Weibull Distribution
Normal Distribution

CALCE used FEA to determine
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Probability of Flex Cracking
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Bend Radius Calculations
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Note: Bend radius
will be strongly
dependent upon
attachment
configuration.

The same
displacement can
result in 1/3rd the
bend radius.
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Flex Crack Solutions

• Design Changes
– Smaller capacitors
– Choose a dielectric material with a higher

fracture toughness
– Reduce bond pad width
– Replace with tantalum capacitors
– Improve insertion and bolt tolerances
– Avoid placing MLCC's near board edges and

holes
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Flex Crack Solutions

• Process Changes
– Minimize board warpage
– Use of board stiffeners
– Avoid high stress depaneling methods, such as

manual break, shear or "pizza cutter". Routing
is preferred.

– Use of torque limiters
– Appropriate fixturing of in-circuit testing (ICT)
– Additional training
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Silver Migration

• Low standoff height of MLCC's can result
in high halide ion concentration
– Causes migration of the silver-glass frit

– Can lead to excessive current leakage

• Can be resistant to cleaning
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Tombstoning

• Also known as drawbridge

• Root Causes
– Excessive solder

– Solder Mask Overthickness

– Orientation
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Screening Strategies

• Primarily dependent upon the defect type

• Avoid if possible (low return on
investment)
– Uses scarce resources (time, money,

manpower)

– Push down the supply chain

• Select non-destructive over destructive
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Purpose of Screening

• To prevent failures

• Capacitors store a high
amount of energy
– Charring of the MLCC

– Damage to adjacent
components

– Destruction of the
board or product

– Damage to customer
site
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Screening (Intrinsic Defects)

• Visual
– Low success rate (most defects are internal)

• Xray
– Very low success rate

• Scanning Acoustic Microscopy (SAM)
– Includes variants, such as scanning laser acoustic

microscopy (SLAM)
– Very successful on voids and delamination (less so on

cracks propagating at 45o or greater)
– Can be performed internally or through contract work

• Sonoscan has analyzed over 1 million chip capacitors
• $65K capital + several days of training
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Electrical Screens (Intrinsic)
• Functional Test

– Medium success rate
– Most intrinsic defects, except for gross defects have not

initiated failure mechanisms, such as increased current
leakage or reduced capacitance

• Overvoltage
– Two modes: High voltage and ionization voltage

• High voltage (2x rated voltage)
• 15 volts corresponds to the ionization potential of nitrogen (14.5 eV)

• Piezoelectric testing
– Recently demonstrated (not widely adopted)
– Effective on voids and delamination
– Requires specialized equipment ($??) and training
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Environmental Screens (Intrinsic)

• High Temperature Operating Life (HTOL)
– "Dry" silver migration occurs at temperatures > 120oC
– Migration behavior well known

• Temperature/Humidity/Bias (THB)
– "Wet" silver migration will not occur below 65%RH
– Kemet recommends 24 hours at 85oC/85%RH at 50

volt bias
– Other research (Hing and Jackson, 1989) suggests a

more thorough screen might be 35 hours at 85oC/
85%RH at 100 volt bias (assumes a 25 micron
electrode spacing)

• Both screens are destructive
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Screens (Extrinsic)
• Acoustic microscopy is not recommended for

extrinsic defects
– Cracks propagate at 45o or greater
– Shadowed by the end cap

• Functional test has a medium success rate
• Environmental screens can be very effective
• Methanol soak

– Methanol is an electrically conductive liquid.
– Capillary action and low viscosity allow methanol to

wick up any surface cracks
– Conductive film between adjacent electrodes (increase

in current leakage)
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Summary

• Ceramic chip capacitors can fail
– Choose a quality supplier

– If necessary, choose high reliability MLCC's

– Optimize and control your assembly process

– Always identify the root-cause of failure
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