EMC problems from Common Mode Noise on High Speed Differential Signals

Bruce Archambeault, PhD
Alma Jaze, Sam Connor, Jay Diepenbrock
IBM

barch@us.ibm.com

Differential Signals

- Commonly used for high speed communications
- Gb/s common

Common Mode Effects are Important!

- Differential Signals <u>will</u> have some amount of common mode
 - Add individual signals rather than subtract
 - Small amount of skew, rise/fall time mismatch or pulse amplitude mismatch can cause significant CM
- Likely to cause negative EMC effects
- Likely to cause noise between GND planes between PCBs
 - Potential to not include these effects with eye pattern predictions
- Likely to cause problems on I/O cables

Pseudo-Differential Nets

- Are the drivers really differential? Or complementary single ended nets?
- True differential requires no nearby reference plane
- Currents will exist on reference plane

Microstrip Electric/Magnetic Field Lines Common Mode 8 mil wide trace, 8 mils above plane, 65/115 ohm)

Microstrip Electric/Magnetic Field Lines Differential Mode 8 mil wide trace, 8 mils above plane, 65/115 ohm)

Electric/Magnetic Field Lines Symmetrical Stripline (Differential)

Electric/Magnetic Field Lines

Asymmetrical Stripline (Differential)

Pseudo-Differential Nets Reference Plane Currents

- Signal integrity is greatly helped by the use of differential nets
 - Added redundancy allows more signal loss
 - Cheaper materials
 - Increased immunity from external disturbance
 - Disturbance is same on both traces, so ignored by differential receiver
- Currents in reference plane are balanced only if:
 - Traces are equal length (within 10-20 mils)
 - Drivers are EXACTLY balanced
 - Perfect wiring/material symmetry
 - Not likely!

What About Pseudo-Differential Nets?

- So-called differential traces are typically NOT truly differential
 - Two complementary single-ended drivers relative to 'ground'
 - Skew, rise/fall variation, and amplitude mismatch
 - Asymmetric spacing of pair to 'ground' plane
- Receiver is differential
 - Senses difference between two nets (independent of 'ground')
 - Provides good immunity to common mode noise
 - Good for signal quality/integrity

Pseudo-Differential Nets Current in Nearby Plane

- Balanced/Differential currents have matching current in nearby plane
 - No issue for discontinuities
- Any unbalanced (common mode) currents have return currents in nearby plane that must return to source!
 - All normal concerns for single-ended nets apply!

Why Control Common Mode Noise in Differential Pairs?

- Common Mode Noise is inevitable in practical differential pairs
 - Skew
 - Rise/fall time mismatch
 - Amplitude mismatch
 - Asymmetry in channel; e. g., vias, trace/dielectric variations, "glass weave" effect, etc.
- Common mode noise is a big problem in EMC!
- Common mode noise can increase differential crosstalk

Common-Mode Noise on PCB

Common Mode from skew on Differential Mode Signals

- Small amount of skew (from differential signal point of view) results in significant CM
- As little as 1% of bit width (UI) for skew can have significant EMI effects
- As little as 10% of bit width skew creates CM signal of equivalent amplitude as initial signals
- Simulation of CM from simple spreadsheet analysis

What Causes In-Pair Skew?

- Trace Length mis-match
- One trace close to edge of groundreference plane
- Fiber weave effects
 - Different dielectric constant if trace over fiber or 'goop'
- Asymmetrical ground-reference vias near differential vias

Individual Channels of Differential Signal with Skew 2 Gb/s with 50 ps Rise and Fall Time (+/- 1.0 volts)

Common Mode Voltage on Differential Pair Due to In-Pair Skew 2 Gb/s with 50 ps Rise and Fall Time (+/- 1.0 volts)

Common Mode Voltage on Differential Pair Due to In-Pair Skew 2 Gb/s with 50 ps Rise and Fall Time (+/- 1.0 volts)

Extra Skew from Close Proximity to Plane Edge 1 cm Microstrip (5 mil wide, 3 mil height, 1/2 oz)

Percentage of Unit Interval Additional Skew Created From Close Proximity to Edge of Ground-Reference Plane

Rise/Fall Time Mismatch

- Small amounts of mismatch create significant CM noise
- Not as significant as skew, but harder to control!
- Causes
 - Charge/discharge time within IC/ASIC

Example of Effect for Differential Signal with Rise/Fall Time Mismatch 2 Gb/s Square Wave (Rise/Fall = 50 & 100 ps)

Common Mode Voltage on Differential Pair Due to Rise/Fall Time Mismatch 2 Gb/s with Differential Signal +/- 1.0 Volts

Common Mode Voltage on Differential Pair Due to Rise/Fall Time Mismatch 2 Gb/s with Differential Signal +/- 1.0 Volts

Amplitude Mismatch

- Small amounts of mismatch create significant CM noise
- Harmonics are additive with other sources of CM noise
- Causes
 - Typically imbalance within ASIC/IC

Common Mode Voltage on Differential Pair Due to Amplitude Mismatch Clock 2 Gb/s with (100 ps Rise/Fall Time) Nominal Differential Signal +/- 1.0 V

Common Mode Voltage on Differential Pair Due to Amplitude Mismatch Clock 2 Gb/s with (100 ps Rise/Fall Time) Nominal Differential Signal +/- 1.0 Volts

Common Mode from Via Asymmetry

Significant CM created!

Differential to Single Ended Via Mode Conversion Due to GND Via Asymmetry (In Line) 10 mils between planes

Differential to Single Ended Via Mode Conversion Due to GND Via Asymmetry (In Line) 10 mils between planes (Eleven Planes with Through Via)

Via Symmetry Effect on Common Mode Conversion

Top View of the Board: Different GND configurations

Asymmetric Ground Via Effects

Asymmetry with Two GND Vias

TOP VIEW

PROFILE VIEW

Dielectric Constant, Metal Thickness: 4.3, 1mil

Antipad, Pad, Via Drill Diameter: 35 mil, 20mil, 12 mil

The effect of symmetry in TF for various dielectric thickness GND vias at 60mil away from center- differential port to cavity port

The effect of the asymmetry on the transfer function - differential port to cavity port

TF amp at worst case sym. - TF amp at best case symmetry

Common Mode is Impossible to Avoid

- Many other asymmetries can add to common mode noise creation
 - Differential pair routed near edge of plane
 - Dielectric effects
- For EMI, small amounts of CM noise is significant!
 - Above 1 GHz, 1 mV of CM noise is risky!
 - 1mV = 60 dBuV
 - CM filters are required if cables not heavily shielded

Board-to-Board Differential Pair Issues

Example Measured Differential Individual Signal-to-GND

500 mV P-P (each)

Individual Differential Signals ADDED

Common Mode Noise 170 mV P-P

Measured GND-to-GND Voltage

Antenna Structures

Dipole antenna

Pin Assignment Controls Inductance for CM signals

Connector Pin Assignment

 Different pins within same pair may have different loop Inductance for CM

"Ground" pins
Differential pair

pin 1 -- 26.6nH

pin 2 -- 23.6nH

pin 3 -- 31.8nH

pin 4 -- 28.8nH

Summary

- Real-world "differential" signals still have currents in ground-reference planes
- Differential signals <u>WILL</u> have common mode noise
 - Care is needed to minimize common mode noise
- Common mode noise causes EMC issues on external cables and between boards
- In-pair skew, rise/fall time mismatch, amplitude mismatch, and physical channel asymmetry cause common mode noise
 - GND via asymmetry
 - Trace close to edge of ground-reference plane
 - Dielectric weave effects