Elegant Connections in Physics

Electric Permittivity and Magnetic Permeability
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In our studies of electricity and magnetism, the ubiquitous
constants ¢ and p , respectively called the “electric permittivity”
and “magnetic permeability” of vacuum, set the scale for electric
and magnetic phenomena. The usage and meaning of these
constants raises some curious questions. For instance, why would
someone choose to define them in a way that spoils the otherwise
beautiful symmetry between analogous formulas for electric and
magnetic quantities? To illustrate, we find the energy density
of the electric field E to be }2¢ £?, but the energy density of a
magnetic field B is /2B8%/p_ instead of }2u B>. Furthermore, how do
their values conspire to give the speed of light? And given that the
“sub-0” denotes the properties of vacuum, if the vacuum is nothing
but empty space, how can any number other than zero characterize
its properties?[1] Why is 4x usually connected with € and p?
Why was the value of 1/4ne_ historically measured to several
significant figures, while the value of p /4n was said to be exact?
These constants seem to slip in through the back door. In
classical field theory we meet the electrostatic field E(r) and the
magnetostatic field B(r). The electric field at r, due to a point
source charge ¢’ located at r’, is given by Coulomb’s law,

E(r)=k ¢R/RF, (M
where the vector R = r - r’ goes from the source point to the field
point (see Fig. 1a).
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Fig. 1. Geometry of the laws of Coulomb (a) and Biot-Savart (b).

Magnetic fields are produced by electric currents. A static
magnetic field requires a steady flow of charges, a DC current /".
Let dr’ denote the infinitesimal displacement vector of one of those
charges instantaneously at a fixed location (tangent to conventional
current). The infinitesimal piece of directed current /'dr’ serves

as a point source and contributes the increment of magnetic field
dB(r) at the field point according to the Biot—Savart law,

dB(r)= k I'dr'xR/R’. Q)

This must be integrated around the entire circuit to yield the B field
atr.
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The values of k, and & set the scale for these fields and the forces
they produce. In SI units their values are

k = 8.988x10° Nm/C2 3)

e

to four significant figures, and
k, =1x107 Ns*/C? 4)

exactly. As you might surmise, k_was historically defined and k,
was measured.

When we derive Gauss’s law for E from Coulomb’s law (take
the scalar product of Eq. (1) with nd4, a patch of area d4 with
outward-pointing unit vector n, and integrate over a closed
surface), we pick up a factor of 4x from a solid angle and obtain

ggE ‘ndA=4nkgq, . ®)

where the charge g, , . resides within the closed surface. In
differential form,[2] Gauss’ law says

V-E = 4nk_p, (6)

where p denotes the charge density. In deriving Ampere’s law from
the Biot—Savart law, another 4n appears and Ampere’s law gives

B-dr= 4nk [ (7

m" pierce’

where L e denotes the current that pierces any surface bounded by
the closed contour. In differential form Ampére’s law becomes[3]

VxB =4nk_j, ®)
where j denotes the electric current density.

It is customary to hide the ubiquitous 4n’s by dividing them out
of the Coulomb and Biot-Savart constants, thereby introducing ¢
and p ,

k,=1/4ne and k = /4m, 9

the so-called “rationalized” units of Oliver Heaviside.[4] From
Egs. (3), (4), and (9) we obtain

g, = 8.844x10"* C*/Nm*
and
u, = 4nx107 Ns*/C2. (10)

With them the laws of Gauss and Ampeére look less cluttered:

V-E=ple, (11)
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and
VxB = j. (12)

There is nothing fundamental about choosing € and p_ over k, and
k_; the choice is a matter of taste and convenience.

The constant ¢ _is called the “electric permittivity” and
the “magnetic permeability” of vacuum. The permittivity and
permeability of matter take on values that are rescalings of g
and p . These names suggest that the permittivity measures in
some sense the transparency of a medium to an electric field, and
permeability the ability of the medium to support a magnetic field.
The rescaling coefficients that distinguish matter from vacuum
have names such as susceptibilities, dielectric constants, and the
index of refraction. First, let us see why p_was originally defined
and ¢ was originally measured.

The Values of € and p,
In any system of physical measurement, some units must be defined
as standards. For instance, to measure length one could choose a
reference body and then express all other lengths as multiples of it.
An amusing instance occurred in 1958 when some MIT students
measured the length of a bridge that spans the Charles River by
using their classmate Oliver Smoot as the unit. The length of the
bridge was reported to be 364.4 smoots, plus or minus one ear.[5]
Since the smoot as a unit of length is not reproducible in all places
for all time, a less subjective standard is needed. The SI system
(Systéme International) that you met in General Physics originally
defined units for length (meter, m), mass (kilogram, kg), and time
(second, s). The second is today defined in terms of the frequency
of a certain spectral line of cesium-133. Before 1960 the meter was
originally defined by a specific archival bar. Between 1960 and
1983 the meter was defined in terms of a wavelength of a spectral
line emitted by krypton-86 (more about 1983 later). Mass was and
still is (for now) defined in terms of an archived body, the carefully
preserved platinum-iridium standard kilogram, “Le Grande K”
stored near Paris, France.[6] All dimensioned observables in the SI
or “mks” system reduce to some combination of meter, kilograms,
and seconds. For example, the unit of force (the Newton, N) is
kg-m/s?.

A close relative of the mks system is the “cgs” system, which
uses centimeters (cm) for length (1 m = 100 cm), grams (g) for
mass (1 kg = 1000 g), and the second for time. Here the unit of
force is the dyne (1 N = 10° dynes). If you routinely work with
small amounts of material, then cgs may be more convenient than
mks.

Electric charge and current can be defined in terms of force.
Historically, there were two ways to do this:[7] (1) an electrostatic
definition of charge, where we choose a value for ¢ and then
measure the force between two standardized charge configurations;
or (2) a magnetostatic definition of current, where a value for p_ is
chosen and the force measured between two standardized currents.
Let us see how this works in both instances.

Since a point charge ¢’ produces a field E given by Coulomb’s
law, and another point charge g “feels” the force F = gE, the
magnitude of the electrostatic force F between two identical point
charges will be

F=(1/4ng) ¢*/R? (13)
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so that, by dimensional analysis, g ~ V(F¢_) x (length). The cgs
system gives the electric charge unit the name “electrostatic unit”
or esu or “statcoulomb,” and defines 1/4ne, = 1 dyne-cm*/esu’. By
definition, one esu of charge is carried by each of two identical
point charges so that when 1 cm apart, the electric force between
them equals 1 dyne. If you have done a Cavendish balance lab,
then you have been through a version of this procedure. With
charge defined, electric current, / = dg/dt, can also be defined in
these units: 1 “statampere” = 1 esu/s.

The SI system historically used the second alternative (the
procedure described below pertains to definitions of charge and
current before 1983). For instance, at the distance » from an
infinitely long straight wire, the Biot—Savart or Ampere laws gives
B = p I2nr. If another identical wire parallel to the first also
carries current /, a segment of it having length / feels the force
magnitude F' = [IB, which we rearrange as

F/l =y P2nr. 14)

The unit of current that we call the Ampere (A) is defined to be the
current such that, with these wires 1 m apart, a force per length of
2x1077 N/m is produced. The size of the “amp” is determined by
the value chosen for p . In the SI system, we define p, = 4nx107
N/A?. The unit of charge, the Coulomb, is defined as 1 C=1 A-s.
When 1 A of current flows by you for 1 s, then a total charge of 1
Coulomb (C) has passed by. It takes a lot of elementary particles
to make a Coulomb—the charge of one electron is 1.6x10"" C.

So far we have values for p_ and € but in different units. But
notice that

e, =107 (1 esw/Cy* (1 em/s)2. (15)

To find the esu-to-Coulomb ratio, go back to either experiment and
put into it a known amount of charge or current measured from the
other system’s definition. For example, in the two-charge system
used to define the esu, replace the 1 esu with a known number X
of Coulombs, keep the point charges 1 cm apart, and remeasure
the force in dynes. Taking the ratio of forces, the 1/4ne_ drops out,
leaving

FJF, = (X C/1 esu). (16)

By measuring X and the force ratio (rounding the measured
2.9979250 to 3 in this discussion), one finds that 1 C = 3x10° esu,
and Eq. (15) becomes p g = 1/(3x10'" cm/s)*.[8] It will not escape
notice that

pe =1/c 17

where ¢ denotes the pre-1983 measured speed of light in vacuum!
One might wonder if someone slyly worked backward from the
measured value of ¢ to engineer the value of i that ensures Eq.
(17). Suppose we try it! If the value of pu had been chosen to
have some other value, say rescaled by a factor S from the choice
mentioned above, so that our p_ gets replaced with
p,— Sp_ then the Ampeére unit, and likewise the Coulomb,
would have been rescaled by 1/VS. That means there would be a
compensating S on the right-hand side of Eq. (15), which would
cancel the S in p, — Su_on the left side of that equation. This
seeming coincidence between electrostatic and electromagnetic

The SPS Observer | 13



units and the speed of light suggests a deep insight: Light is
electromagnetic! The mechanism of that linkage would have to
await the rest of Maxwell’s equations, with their prediction of
waves in the electromagnetic field that propagate in vacuum at the
speed 1V( pg,).

George Gamow has reflected, “The numerical coincidences
between seemingly unconnected physical quantities, such as the
ratio of electrostatic and electromagnetic units on the one side, and
the velocity of light on the other, often led to fundamental new
discoveries and broad generalizations in physics.”[9] The light-
as-electrodynamics case is not unique, as Gamow reminds us. For
instance, the seeming coincidence between the constant that Max
Planck used in 1900 to fit the spectrum of blackbody radiation and
the constant that Einstein used in 1905 to fit the energy spectrum of
electrons in the photoelectric effect triggered the development of
quantum mechanics. The equivalence of gravitational and inertial
mass offers another instance where an apparent “coincidence” led,
on deeper inspection, to profound insight into the unification of
gravitation and energy with space and time.

Now we can put & into the same units as p_, from Eq. (17) and
using the measurements described above. We find (replacing 3
with the present standard value 2.99792458)[10]

g, = 8.854187817x10"* C*/Nm*.  (18)

These considerations describe how electric charge and current
were defined before 1983. With the development of high-speed
electronics, it became possible by 1983 to redefine the meter in
terms of the distance that light travels in a tiny fraction of a second.
In particular, the speed of light is now defined to be 299,792,458
m/s, which was the same as defining the meter to be the distance
light travels in 1/299,792,458 5.[10] With both p_and the speed
of light defined, from Eq. (17) we can say that, since 1983, ¢ no
longer needs to be measured. However, I find it astonishing that
the insight “light is electromagnetic” came from static electric
and magnetic measurements. This was done by measuring two
of the three quantities in the trio p , €, and ¢, which were then put
together with the discovery of the relation u & = 1/c*. That insight
occurred long before high-speed electronics existed.

The finite value of the speed of light suggests that the vacuum
of empty space offers impedance to the flow of electromagnetic
energy. As the names of ¢ and p_ suggest, such impedance even
for vacuum will be related to these constants. The impedance Z
that any medium presents to a current / sent through it is related to
the voltage V driving that current in a generalization of Ohm’s law:

Z=VI (19)

By definition, voltage is the line integral of E. By Ampeére’s

law (generalized to include Maxwell’s displacement current,

see Eq. (22) below), the current is 1/p times the line integral of
the magnetic field. The geometrical factors in the line integrals
cancel, giving us Z = p_E/B. Looking ahead to other parts

of electrodynamics, we note that the amplitudes of harmonic
radiation fields (light waves) are related in SI units by £ = ¢B, so
that, for space filled with light waves but no matter, we find that
vacuum offers to the propagation of light waves the impedance

Z=pc= /u‘, /8“ ~ 377 ohms. (20)
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Figure A

Figure C

Figure D

Fig. 2. Cartoon illustrations of Maxwell’s equations: (A) Gauss’s
law for E; (B) Gauss’s law for B; (C) the Ampere—-Maxwell law; and
(D) Faraday’s law.

Let us go beyond vacuum and look at the permittivity and
permeability in matter. These quantities depart from their vacuum
values because externally applied electric and magnetic fields
impinging on matter can distort the molecules, producing or
enhancing electric and magnetic dipole moments. These dipoles
then produce electric and magnetic fields of their own, which
combine with the original external field.

Before going there, let us write the time-dependent Maxwell
equations that hold in vacuum or in matter (see Fig. 2).[4]
One is Gauss’s law for E, Eq. (11), which says E field streamlines
diverge from (or converge toward) their source charges. Gauss’s
law for B conveys a similar relationship, although physics has
yet to find evidence for isolated magnetic poles—the density of
magnetic monopoles evidently vanishes:

V-B=0. 1)

Streamlines of B do not diverge from or converge to a point, but
can only close back on themselves.

Moving charges and changing electric fields produce B fields
with whirlpools (a “curl”), described by the Ampere—Maxwell law,
generalizing Eq. (12) to

VxB=p (j+e, dE/dt) (22)

where ¢ denotes time.
When the magnetic field is time-dependent, it generates an
electric field with whirlpools, and Faraday’s law says

VxE = -9B/ot. (23)

In all these expressions, the charge density p and the current
density j are totals due to all charged particles in the system. It is
crucial in what follows to distinguish total charges and currents
from the so-called “free charges” and “mobile currents.” Free
charges are those in excess of those that make up neutral matter.

A prototypical example would be the excess positives in one plate
(and the same number of excess negatives on the other plate) of a
charged capacitor. They set up an electric field between the plates,
which points from the free positives to the free negatives. When
we insert our sample material between the plates, the molecules are
“hit” by this original electric field.
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Mobile currents are merely charged particles in motion, such
as the loosely bound outer-shell electrons in the atoms of a good
conductor. To visualize a venue for mobile currents, imagine
the current flowing in the wire of a solenoid. When our sample
of matter is placed inside the solenoid, its atoms are hit with its
original magnetic field.

These externally applied electric and magnetic fields may induce
electric and magnetic dipole moments among the material’s
molecules. Consider the electric case. When the capacitor’s electric
field is switched on, in the material between the plates a molecule’s
electrons are pulled away from the negative plate of the capacitor and
toward the positive plate, while the positive charges are oppositely
pulled. The molecules are still electrically neutral, but they get
“stretched” with the centers of positive and negative charge separated.
The molecules have become little dipoles, and each one produces its
own electric field. That field’s direction opposes the original one that
was set up between the capacitor plates by the free charges.

An idealized electric dipole consists of equal and opposite
charges, +¢ and —¢, separated by some small distance. Recall that
a point charge ¢ sets up an electric potential given by

V(r) = (1/4ne,) g/R 24)

where R = |r — r'| denotes the distance from the source point to the
field point. The potential of a dipole will be the superposition of
such terms for both charges. Being a pair of charges, the electric
potential produced by an electric dipole is (to lowest order in R),

V() = (1/4nc) pR/R® ©25)

where the electric dipole moment p is defined as p = ga, with a the
displacement vector from —g to +q.

Consider now a sample of matter that consists of polar
molecules, and let P = P(r") denote the density of electric dipole
moments. The potential due to a distribution of such dipoles
follows by superposition of Eq. (25) over the volume of the matter:

V() = (1/4ne,) [ (P-RYR d'dy'ds’
= (1/4ne ) [P-V'(1/R) dx'dy'dz" (26)

where the gradient operator V' takes derivatives with respect to
the r'’ coordinates. By integrating by parts and using Gauss’s
divergence theorem on one of the terms,[2] we obtain one
contribution to 7 from the surface of the material and another from
the bulk volume:[11]

Vr)=(1/4ne) [ § (Pn)/R dA’
~ [(V"-P)R dv'dy'd="].  (27)

By comparing these results to the generic superposition based on
Eq. (24), in particular[12]

) = (1/4ne) [ pr) dx'dy'dz’, (28)
R

we identify P-n as a charge per unit area due to polarization on
the surface of the material, and —V-P(r) as the volume density
of polarization charges (now dropping the prime because we are
henceforth looking at the P field itself, not having to distinguish
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source points from field points).

Returning to Gauss’s law for E, Eq. (11), we now see that the
total charge density can be split into a contribution of free charges
and another one from the electric dipoles:

VE=(p,. -VP) /e, 29)
This can be transposed to appear as
VD = pfree (30)

where
D=¢E+P. 3D

When no matter exists other than the free charges, then P=0; D
and E are two names for the same field, except for the factor of ¢ .
But with polarization “turned on,” D and E have different roles: D
is the electric field due to free charges and E the total electric field.
Polarization charges orient themselves so their field partially cancels
the D field of the free charges; thus, E is proportional to D — P.
Before we turn to magnetic dipoles, we should notice that the
polarization charge density, when time dependent, forms an electric
current that must be included among magnetic field sources. A
surface layer of polarized material has charge per area P-n which,
if changing (imagine time-dependent molecular stretching), means
a current through the layer exists, given by

I,=J(@P/oryn d4 (32)

and thus
jpol = 9gP/ot. (33)

Turning to magnetism, because the divergence of a curl
identically vanishes, Gauss’s law for B says that B may be written
as the curl of a vector potential A. For a generic current density j,
A is given by [12]

i)
A@) = (w/dn) [— dv'dy'dz".  (34)
R

From this one can show that the A of a magnetic dipole of moment
m is[13]

A = (p /4m) mxR/R°. (35

In the presence of an external magnetic field the molecules
in matter may acquire a magnetic dipole moment m or have an
existing one enhanced. Consider a chunk of matter that carries
magnetic dipole moment per unit volume M. By superposition,
and with the same tricks (integration by parts) that we used in
the electric dipole case, you can show that VxM forms a current
density due to the magnetic dipoles.

Now the Ampére—Maxwell law, Eq. (22), may be written
with mobile currents distinguished from electric and magnetic

polarization currents. Explicitly, withj __ =j . + Joo T EQ-
(22) becomes
VxB =p (], i T P/t + VM + ¢ 0E/07). (36)

Now use Eq. (31) and transpose the result to write Eq. (36) as
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VxH =] (37

mobile

where
H=B/p - M. (38)

Notice that the total magnetic field B is proportional to H + M; the
magnetism induced in the sample typically enhances the externally
applied field.

We have rewritten the Maxwell equations with source terms to
distinguish “free and mobile” sources from polarization sources.
The remaining two Maxwell equations have no source terms, so
they can remain expressed in terms of E and B. When a charge
¢ finds itself in the presence of electric and magnetic fields, the
electromagnetic force on it is still g(E + vxB): the total fields exert
force on a test charge.

Constitutive Relations
Now we need constitutive relations that relate P and M to the
other fields. For an isotropic medium we define its dimensionless
“electric susceptibility” y according to

P= g yE. (39)

If y is not itself a function of E then the material is said to be linear
(when y does depend on E, then we are in the regime of nonlinear
optics). From Eq. (31) we obtain the constitutive relation between
DandE,

D=¢ (1+yE=¢E. (40)

The factor k = 1+y is called the “dielectric constant” and ¢ K = € the
“permittivity” of the material.

Some materials, when hit with an electric field E in, say, the
x-direction, may show a polarization in, say, the y-direction. To
allow for such cases we define the susceptibility tensor (or matrix),
a quantity with nine components { xw}, according to P, = &_ % £y
The subscripts denote the various components, and repeated indices
are summed over all three of them. From here one can go on to
define dielectric and permittivity tensors.

In a similar way the magnetic susceptibility y is defined for an
isotropic medium as M = yH, which, by Eq. (38), also gives the
constitutive relation between B and H,

B= p(1+y)H=pH 41

where p = p_(1+y) denotes the “permeability” of the medium.
Generalizing to tensor relations for nonisotropic materials is
straightforward.

The speed of light v in a medium is related to its permittivity
and permeability according to ue = 12, The index of refraction
n of a piece of material is determined by the polarizability of its
molecules, according to[14]

n=c/h=[ue/pg 1" = [(1+y) (1+p]". (42)

Such macro/micro connections generalize, of course. The electric
and magnetic susceptibilities, and other such coefficients, can

be predicted by using statistical mechanics applied to models of
the molecules that make up the material. These constants offer a
window from the macroscopic world of voltmeters and ammeters
into the microscopic world of atoms and molecules.
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Finally, you might wonder why the definitions put k ~ p butk ~1/g
instead of the more symmetrical &, ~ ¢ . I suppose this is due to the lack
of symmetry in the definitions of capacitance and inductance. In terms
of self-inductance L and capacitance C, the voltage across an inductor
is LaPq/df? but is ¢/C for the capacitor. Notice the inverse relation
between voltage and charge (or its derivative) in comparing C to L.
That inversion explains, I think, why the permittivity and permeability
are defined according k£~ p_but k, ~ 1/¢ . This way, whenever you
derive a formula for an object’s capacitance you get C ~ € x (length),
and for inductance you get L ~ p_x(length). The SI units of € may be
written as Farad/meter (F/m) and for p_ they are Henry/meter (H/m).
“Farads” and “Henrys” are the SI names for the units of capacitance (1
F = 1volt/Coulomb) and inductance (1 H=1 volt/(C/s?)).

From vacuum to superconductors, from water to iron, a body’s
permittivity and its permeability tell us complex stories about the
medium’s interactions with electric and magnetic fields.
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